6,574 research outputs found

    Assessing and countering reaction attacks against post-quantum public-key cryptosystems based on QC-LDPC codes

    Full text link
    Code-based public-key cryptosystems based on QC-LDPC and QC-MDPC codes are promising post-quantum candidates to replace quantum vulnerable classical alternatives. However, a new type of attacks based on Bob's reactions have recently been introduced and appear to significantly reduce the length of the life of any keypair used in these systems. In this paper we estimate the complexity of all known reaction attacks against QC-LDPC and QC-MDPC code-based variants of the McEliece cryptosystem. We also show how the structure of the secret key and, in particular, the secret code rate affect the complexity of these attacks. It follows from our results that QC-LDPC code-based systems can indeed withstand reaction attacks, on condition that some specific decoding algorithms are used and the secret code has a sufficiently high rate.Comment: 21 pages, 2 figures, to be presented at CANS 201

    Analysis of reaction and timing attacks against cryptosystems based on sparse parity-check codes

    Full text link
    In this paper we study reaction and timing attacks against cryptosystems based on sparse parity-check codes, which encompass low-density parity-check (LDPC) codes and moderate-density parity-check (MDPC) codes. We show that the feasibility of these attacks is not strictly associated to the quasi-cyclic (QC) structure of the code but is related to the intrinsically probabilistic decoding of any sparse parity-check code. So, these attacks not only work against QC codes, but can be generalized to broader classes of codes. We provide a novel algorithm that, in the case of a QC code, allows recovering a larger amount of information than that retrievable through existing attacks and we use this algorithm to characterize new side-channel information leakages. We devise a theoretical model for the decoder that describes and justifies our results. Numerical simulations are provided that confirm the effectiveness of our approach

    The Energy Landscape, Folding Pathways and the Kinetics of a Knotted Protein

    Get PDF
    The folding pathway and rate coefficients of the folding of a knotted protein are calculated for a potential energy function with minimal energetic frustration. A kinetic transition network is constructed using the discrete path sampling approach, and the resulting potential energy surface is visualized by constructing disconnectivity graphs. Owing to topological constraints, the low-lying portion of the landscape consists of three distinct regions, corresponding to the native knotted state and to configurations where either the N- or C-terminus is not yet folded into the knot. The fastest folding pathways from denatured states exhibit early formation of the N-terminus portion of the knot and a rate-determining step where the C-terminus is incorporated. The low-lying minima with the N-terminus knotted and the C-terminus free therefore constitute an off-pathway intermediate for this model. The insertion of both the N- and C-termini into the knot occur late in the folding process, creating large energy barriers that are the rate limiting steps in the folding process. When compared to other protein folding proteins of a similar length, this system folds over six orders of magnitude more slowly.Comment: 19 page

    Super Weyl invariance: BPS equations from heterotic worldsheets

    Full text link
    It is well-known that the beta functions on a string worldsheet correspond to the target space equations of motion, e.g. the Einstein equations. We show that the BPS equations, i.e. the conditions of vanishing supersymmetry variations of the space-time fermions, can be directly derived from the worldsheet. To this end we consider the RNS-formulation of the heterotic string with (2,0) supersymmetry, which describes a complex torsion target space that supports a holomorphic vector bundle. After a detailed account of its quantization and renormalization, we establish that the cancellation of the Weyl anomaly combined with (2,0) finiteness implies the heterotic BPS conditions: At the one loop level the geometry is required to be conformally balanced and the gauge background has to satisfy the Hermitean Yang-Mills equations.Comment: 1+31 pages LaTeX, 5 figures; final version, discussion relation Weyl invariance and (2,0) finiteness extended, typos correcte

    High Energy Gamma-Ray Emission From Blazars: EGRET Observations

    Get PDF
    We will present a summary of the observations of blazars by the Energetic Gamma Ray Experiment Telescope (EGRET) on the Compton Gamma Ray Observatory (CGRO). EGRET has detected high energy gamma-ray emission at energies greater than 100 MeV from more that 50 blazars. These sources show inferred isotropic luminosities as large as 3×10493\times 10^{49} ergs s1^{-1}. One of the most remarkable characteristics of the EGRET observations is that the gamma-ray luminosity often dominates the bolometric power of the blazar. A few of the blazars are seen to exhibit variability on very short time-scales of one day or less. The combination of high luminosities and time variations seen in the gamma-ray data indicate that gamma-rays are an important component of the relativistic jet thought to characterize blazars. Currently most models for blazars involve a beaming scenario. In leptonic models, where electrons are the primary accelerated particles, gamma-ray emission is believed to be due to inverse Compton scattering of low energy photons, although opinions differ as to the source of the soft photons. Hardronic models involve secondary production or photomeson production followed by pair cascades, and predict associated neutrino production.Comment: 16 pages, 7 figures, style files included. Invited review paper in "Observational Evidence for Black Holes in the Universe," 1999, ed. S. K. Chakrabarti (Dordrecht: Kluwer), 215-23

    LEDAkem: a post-quantum key encapsulation mechanism based on QC-LDPC codes

    Full text link
    This work presents a new code-based key encapsulation mechanism (KEM) called LEDAkem. It is built on the Niederreiter cryptosystem and relies on quasi-cyclic low-density parity-check codes as secret codes, providing high decoding speeds and compact keypairs. LEDAkem uses ephemeral keys to foil known statistical attacks, and takes advantage of a new decoding algorithm that provides faster decoding than the classical bit-flipping decoder commonly adopted in this kind of systems. The main attacks against LEDAkem are investigated, taking into account quantum speedups. Some instances of LEDAkem are designed to achieve different security levels against classical and quantum computers. Some performance figures obtained through an efficient C99 implementation of LEDAkem are provided.Comment: 21 pages, 3 table

    Predicting participation in group parenting education in an Australian sample: The role of attitudes, norms, and control factors

    Get PDF
    We examined the theory of planned behavior (TPB) in predicting intentions to participate in group parenting education. One hundred and seventy-six parents (138 mothers and 38 fathers) with a child under 12 years completed TPB items assessing attitude, subjective norms, perceived behavioral control (PBC), and two additional social influence variables (self-identity and group norm). Regression analyses supported the TPB predictors of participation intentions with self-identity and group norm also significantly predicting intentions. These findings offer preliminary support for the TPB, along with additional sources of social influence, as a useful predictive model of participation in parenting education

    Role of carbon dioxide and ion transport in the formation of sub-embryonic fluid by the blastoderm of the Japanese quail

    Get PDF
    1. The explanted blastoderm of the Japanese quail was used to explore the role of ions and carbon dioxide in determining the rate of sub-embryonic fluid (SEF) production between 54 and 72 h of incubation. 2. Amiloride, an inhibitor of Na+/H+ exchange, at concentrations of 10-3 to 10-6 M substantially decreased the rate of SEF production when added to the albumen culture medium. N-ethylmaleimide, an inhibitor of V type H+ ATPase, also decreased this rate but only to a small extent at the highest dose applied, 10-3 M. Both inhibitors had no effect on SEF production when added to the SEF. 3. The inhibitors of cellular bicarbonate and chloride exchange, 4-acetamido-4-'isothiocyano-2, 2-'disulphonic acid (SITS) and 4,4'diisothiocyanostilbene-2,2-'disulphonic acid (DIDS), had no effect upon SEF production. 4. Ouabain, an inhibitor of Na+/K+ ATPase, decreased SEF production substantially at all concentrations added to the SEF (10-3 to 10-6 M). Three sulphonamide inhibitors of carbonic anhydrase, acetazolamide, ethoxzolamide and benzolamide, decreased SEF production when added to the SEF at concentrations of 10-3 to 10-6 M. Benzolamide was by far the most potent. Neither ouabain nor the sulphonamides altered SEF production when added to the albumen culture medium. 5. Using a cobalt precipitation method, carbonic anhydrase activity was localised to the endodermal cells of the area vasculosa. The carbonic anhydrase activity was primarily associated with the lateral plasma membranes, which together with the potent inhibitory effect of benzolamide, suggests the carbonic anhydrase of these cells is the membrane-associated form, CA IV. 6. The changes in SEF composition produced by inhibitors were consistent with the production of SEF by local osmotic gradients. 7. It is concluded that a Na+/K+ ATPase is located on the basolateral membranes of the endodermal cells of the area vasculosa , and that a sodium ion/hydrogen ion exchanger is located on their apical surfaces. Protons for this exchanger would be provided by the hydration of CO2 catalysed by the membrane-associated carbonic anhydrase. Furthermore, it is proposed that the prime function of the endodermal cells of the area vasculosa is the production of SEF
    corecore